E-Voting and Implementation

Sven Heiberg, Smartmatic-Cybernetica CEIV

Providing Technology for Elections

- Cybernetica AS
 - Established in 1997, roots in Academia since 1960
 - Architects of the e-Estonia ecosystem
 - R&D of Estonian i-voting system since 2003
- Smartmatic
 - Modernizing elections globally since 2000
 - Diverse online voting projects:
 - Pilot projects: Mexico, Benin
 - Organizational elections: Estonia, Germany
 - Municipal elections: Norway, Canada, Australia
 - Governmental elections: ongoing RFI/RFP processes

Estonian Experience

- 14th consecutive election using online voting
 - Established legal framework supporting online voting
 - Advanced technological infrastructure for citizen-government communication
 - Comprehensive understanding of online voting risks
 - Awareness of differences between paper and electronic voting
 - Robust organizational support for online voting technologies
 - Modern, reliable and secure technology
 - Multiple opportunities to learn from past mistakes
- Steady interest in the Estonian experience
- Similar challenges in new opportunities

Legal Framework

Anti-Coercion Mechanisms vs. Electoral Law

- In Estonia, voters can vote online multiple times; only the last vote counts
- Paper vote takes precedence over electronic vote
- Supreme Court discussion in 2005

Ballot Presentation

- Paper ballot designs often have detailed regulations
- These designs may not suit digital screens (PCs/smartphones)
- Technology can assist users by:
 - Warning about malformed ballots
 - Providing search capabilities

Voter Eligibility Verification

• Estonia – widespread use of PKI based ID-cards, mID, and Smart-ID

- Digital signature is legislated and widely used
- Online voting turnout in 2005: 1.9%
- Digital signature: a core pillar of security
 - Ensuring eligibility, integrity, and non-repudiation
- Online-voting can boost the use of eID in the country
- Alternatives either unusuitable for governmental elections or increase the cost of a single election
 - OpenID Connect
 - Election specific credential generation and distribution

Risk-based Selection of Technology

Initial Risk Analysis for Estonian Online Voting (2003):

- "The weak point of the scheme, is the need to trust central servers and computers of the voters. Is such a compromise reasonable? In our opinion – yes." (Ansper et al., 2003)"
- Vulnerabilities exist, countermeasures also exist, residual risk is accepted
 - Secure concept: authentication, ballot secrecy, integrity
 - Security engineering: system architecture, implementation, deployment
 - Organization: documented auditable procedure developed according to risk analysis, definition of organizational roles
- The initial risk analysis is obsolete today
- Current Goal: No trust in central servers or voters' computers

Trust in Voters' Computers

- Individual verifiability
 - Voter has means to verify some of the following claims
 - Cast-as-intended
 - Accepted-as-cast
 - Tallied-as-recorded
- Individual verifiability may affect coercion
- How to act on failed verifications?

Trust in Central Servers

- Universal verifiability
 - Observer (third-party data auditor) can directly verify:
 - Only votes by eligible voters are in the ballo box
 - At most one vote per voter is in the ballot box
 - No un-authorized modifications to the ballot box have occurred
 - The result is calculated correctly
- Universal verifiability contradicts ballot secrecy unless carried out in a privacy-preserving manner.
- Modern cryptographic mechanisms for online voting protocols (homomorphic encryption, mixnets, zero-knowledge proofs) are often not standardized in e.g. FIPS or Common Criteria.

Organizational Structure

- Reliable, transparent and privacy-preserving online voting requires co-operation of several organisations
 - ESEO election organizer
 - RIA vote collection, election management platform
 - Population registry eligibility provider
 - PPA PKI
 - SK ledger service, CA, OCSP, TSA
 - NEC participation in private key management
 - Auditors observing procedure and data
 - Cybernetica support for software

Security Considerations

Careful Distribution of Duties

- Ensures security across organizational boundaries in high-risk environments.
- Key assumption in using modern security protocols: ledger, threshold decryption, mixnets

Election-as-a-Service Model

 Viable option for lower-risk elections, offering comprehensive solutions from specialized vendors

Platform ownership / co-development

• Allows fine grained control over features to fit into specific environment

Towards Online Voting

- Several challenges exist before implementation
- Unlikely to find a perfect off-the-shelf solution
- Best practices exist; involve specialists rather than reinventing the wheel
- Allow time for concept development, consider piloting

Thank you! Questions?

- https://cyber.ee/
- (a) <u>info@cyber.ee</u>
- ∑ <u>cybernetica</u>
- o<u>cybernetica_ee</u>

in <u>Cybernetica</u>

Sven Heiberg – sven.heiberg@ivotingcentre.ee

SMARTMATIC 5 CYBERNETICA